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Exact vortex solutions of the Navier–Stokes
equations with axisymmetric strain and suction

or injection
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New solutions of the Navier–Stokes equations are presented for axisymmetric vortex
flows subject to strain and to suction or injection. Those expressible in simple separable
or similarity form are emphasized. These exhibit the competing roles of diffusion,
advection and vortex stretching.

1. Introduction
Vortex dynamics remains a subject of intense research activity, with much modern

emphasis on the interaction of vortex structures and the computational modelling of
turbulent flows (see e.g. Moffatt 2000; Kerr 2005; Dritschel, Tran & Scott 2007). It
is therefore surprising that some rather simple exact solutions have been overlooked.
Here we present these solutions which are connected to, or are generalizations
of, previous work by Oseen (1911), Bateman (1932), Burgers (1948), Rott (1958),
Lundgren (1982), Kambe (1984a), Fukumoto (1990) and Moffatt (2000). All of these
works are discussed in context.

Throughout this paper, we seek axisymmetric solutions, in cylindrical polar
coordinates (r , z) and time t , for which the velocity components u and w in the
radial r and axial z-directions are prescribed in the form

u = Ar + B/r, w = −2Az, (1.1)

where, in general, A and B may be constants or functions of time t . Some solutions
with B = 0 have been given in the above-mentioned papers by Burgers, Rott,
Lundgren, Kambe and Moffatt, while solutions with A= 0 have been considered by
Bateman and Fukumoto. The present emphasis is on solutions for the azimuthal
velocity v(r, t), and the corresponding axial vorticity ω(r, t), which are expressible in
relatively simple closed form. Section 2 gives the governing equations and reviews
some previous works. Section 3 presents solutions in separable form when both A

and B are constants, and § 4 discusses separable solutions where B is constant but
A is time-dependent. Section 5 analyses solutions in similarity form, distinguishing
between cases with (a) B = 0, (b) A= 0 and (c) B constant, A= A(t). Section 6 gives
a brief physical discussion of these solutions.
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2. Governing equations
Solutions of the incompressible Navier–Stokes equations in cylindrical polar

coordinates r, θ, z are presented for flows with axial symmetry. The velocity
components are (u, v, w) in the three coordinate directions, p is the pressure,
ρ is the density and ν is the kinematic viscosity. The velocity components and
pressure are taken to be functions of r, z and time t , but not of the azimuthal angle
θ , and body forces are chosen to be zero. Accordingly, the Navier–Stokes equations
(see e.g. Drazin & Riley 2006, pp. 8–9) become

∂u

∂t
+ u

∂u

∂r
+ w

∂u

∂z
− v2

r
= − 1

ρ

∂p

∂r
+ ν

(
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)
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with the axisymmetric Laplacian operator

∇2 ≡ 1
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.

When the velocity components u and w have the assumed form (1.1), the continuity
equation (2.1d ) is satisfied, (2.1a, c) determine the pressure p, and (2.1b) yields

∂v

∂t
+

(
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B

r

)(
∂v

∂r
+

v

r

)
− 2Az

∂v

∂z
= ν

(
∇2v − v

r2

)
. (2.2)

Further, since (2.1a, c) together require that v be independent of the axial coor-
dinate z, this reduces to

∂(rv)

∂τ
=

(
−γ r2 − 2s + r

∂

∂r

)(
1

r

∂

∂r
(rv)

)
, (2.3)

on using the substitutions τ ≡ νt, A ≡ νγ and B ≡ 2νs to eliminate ν. Clearly, the
circulation around any circle of radius r is 2πrv. The vorticity ω, wholly directed
along the z-axis, is r−1∂(rv)/∂r , which satisfies

∂ω

∂τ
= r2s−1 ∂

∂r

(
r1−2s ∂ω

∂r

)
− γ

(
r
∂ω

∂r
+ 2ω

)
. (2.4)

The corresponding pressure (not required below) is given by

−p

ρ
= At

(
r2

2
− z2

)
+ Bt log r + A2

(
r2

2
+ 2z2

)
+ B2

(
1

2r2

)
−

∫ r

r0(t)

v2(r ′)

r ′ dr ′,

where At, Bt denote the time derivatives of A, B and r0(t) is an arbitrary non-
negative function of time t . Note, too, that (2.3) still holds when the axial velocity
component w has the more general form w = −2Az + W (r) compatible with (2.1c).
One can work equally well with (2.3) or (2.4); henceforth, we consider solutions of
these partial differential equations, focusing on solutions that can be expressed in
simple form.
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Solutions of (2.4) have been given by Kambe (1984a) in cases where s = 0.
Interestingly, these solutions are known when γ is any specified function γ (t); for,
with the transformations (Kambe, 1984a, p. 13)

σ = A(τ )r, τ1 =

∫ τ

0

A2(t ′) dt ′, A(τ ) = exp

⌊
−

∫ τ

0

γ (t ′) dt ′
⌋

,

W (σ, τ1) = ω(r, τ )/A2(τ ), (2.5)

W satisfies the standard diffusion equation

Wτ1
= σ −1(σWσ )σ , (2.6)

where the subscripts denote partial derivatives. Note that A(τ ) defined in (2.5) is not
the A introduced previously; to avoid confusion, the latter is henceforth replaced by
νγ . Lundgren (1982) and, in other contexts, Kambe (1983, 1984b) also used these
transformations, and equivalent transformations were first found by Rott (1958).
Thereby, from the known solution of (2.6) with arbitrary initial vorticity ω(r, 0) = Ω0(r)
(see e.g. Carslaw & Jaeger 1959, p. 259), Kambe finds that

ω(σ, τ1) =
A2

2τ1

exp

(
− σ 2

4τ1

)∫ ∞

0

Ω0(ρ) exp

(
− ρ2

4τ1

)
I0

(
σρ

2τ1

)
ρ dρ, (2.7)

where I0 is the modified Bessel function of the first kind. Kambe notes that when γ is
a negative constant, the well-known steady-state solution of Burgers’ vortex (see e.g.
Drazin & Riley 2006, p. 82) is always approached as τ → ∞, and also that Oseen’s
diffusing vortex (Drazin & Riley 2006, p. 169) is a particular solution when γ = 0 (see
also Rott 1958 and Lundgren 1982).

Solutions of (2.3) with γ = 0 and constant s have been given by Fukumoto (1990).
Employing Laplace transforms, he solves the general initial-boundary-value problem
for flow outside a cylinder with fixed radius a, with v(a, t) specified for all t > 0
and v(r , 0) given for all r > a. As might be expected, the solutions are complicated
expressions involving double integrals containing Bessel and exponential functions.
However, some simplification is found in those special cases where s takes integer
values. The details need not be repeated here. But it is worth observing that this
problem, of solving for v(r, t) outside a cylinder, is inevitably more complicated than
that of the diffusion of initial vorticity, with solution given in (2.7). For, not only
does the initial vorticity diffuse with time, but also the boundary at r = a provides
a constant source of vorticity that diffuses outwards. Clearly, more general solutions
than Kambe’s could be constructed, with non-zero γ and with s = 0, for flows outside
a cylinder of radius a with specified azimuthal velocity v(a, t). Then, the transformed
equation (2.6) still applies, and the various solutions for heat conduction given in
Carslaw & Jaeger (1959, chapters 7 and 13) are applicable.

3. Separable solutions for γ and s constant
We now consider cases where both γ and s are non-zero. These do not appear to

have been studied previously. With constant γ and s, let rv = e−pτF (r) in (2.3), so
that

F ′′ −
(

γ r +
2s + 1

r

)
F ′ + pF = 0, (3.1)

where primes denote differentiation with respect to r .
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When γ = 0, the resultant equation is closely related to Bessel’s equation, and has
solutions

F (r) = rs+1
[
C1Js+1

(
p1/2r

)
+ C2Ys+1

(
p1/2r

)]
, (3.2)

where C1 and C2 are arbitrary constants and J and Y respectively denote Bessel
functions of the first and second kind (see Abramowitz & Stegun 1965, p. 362:
9.1.52). (With p replaced by –p, modified Bessel functions are instead obtained, as in
Fukumoto 1990.) These solutions reduce to simpler forms when s = N + 1

2
, where N

is any integer (Abramowitz & Stegun 1965, p. 438), as well as in the trivial case with
p = 0.

Likewise, with any constant γ and s = − 1/2, (3.1) reduces to Weber’s differential
equation

yxx − xyx − ay = 0, x = γ 1/2r, a = −p/γ, where F (r) = y(x); (3.3)

see Kamke (1959, p. 414: 2.44). This has two independent solutions as power series
in odd and even powers of x respectively. Though usually infinite, one or the other
of these series terminates when a is a negative integer.

In the general case, (3.1) may be re-expressed as the confluent hypergeometric
equation (Abramowitz & Stegun 1965, p. 504)

xwxx + (b − x)wx − aw = 0, x = −γ r2/2, b = −s, a = −s + (p/2γ ), (3.4)

where

F (r) = e−xw(x).

Again, there are two independent power series solutions for w(x). One series
truncates if a is a negative integer, say −n (i.e. −p/2γ = n − s), and the other series
truncates if (1 + a – b) is a negative integer, say –m (i.e. −p/2γ = m +1). Clearly, both
series truncate if both −p/2γ = m +1 and s = n − m − 1 for some positive integers
m, n.

Without requiring s to be an integer, other closed-form solutions may be found by
a different transformation. In (3.1), set

F (r) = exp(γ r2/4)rs+1/2H (r)

to obtain

H ′′ = f (r)H, f (r) ≡
(
s + 1

2

) (
s + 3

2

)
r2

+ (γ s − p) +
γ 2r2

4
.

Setting U (r) ≡ H ′/H then gives a differential equation of Riccati type,

U ′ + U 2 = f (r).

This has particular solutions

U =
ā

r
+ b̄r

in the following four cases:

(ā, b̄) =
(
s + 3

2
, − 1

2
γ
)
,

(
s + 3

2
, 1

2
γ
)
,

(
−s − 1

2
, − 1

2
γ
)
,

(
−s − 1

2
, 1

2
γ
)
,

provided b̄(1 + 2ā) = (γ s − p). These respectively require that p = 2γ (1 + s), −2γ , 0
and 2γ s, and the corresponding solutions for rv are

K exp(−2γ (1 + s)τ )r2(s+1), K exp
(
2γ

(
τ + 1

4
r2

))
r2(s+1), K,

K exp
(
2γ

(
−sτ + 1

4
r2

))
, (3.5)
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where K is any constant. Note that, provided γ is negative, the second and fourth
of these solutions decay to zero as r approaches infinity; that the second grows or
decays as time τ increases according to whether γ is positive or negative; and that
the fourth grows or decays as time τ increases according to whether γ s is negative or
positive. When s = 0, the difference of the third and fourth solutions together yield the
Burgers vortex (see (5.1) below). (There will of course be other particular solutions
of (3.1), but none having U (r) with the simple form above.)

Finally in this section, we observe that when solutions F (r; p) are known for
all p, a complete formal solution of the general initial-value problem for rv may
be constructed by Laplace transforms. Inevitably, the result yields complicated
expressions: those with γ = 0 involve Bessel functions and are fully discussed by
Fukumoto (1990). Also, as mentioned above, the initial-value problem for vorticity
when s =0 was solved by Kambe (1984a). The general solution with non-zero s and
γ contains integrals involving hypergeometric functions. In just a few special cases,
reduction to simple expressions is possible. For instance, if γ = 0, the C1 solution of
(3.2) gives

rv =

∫ ∞

0

K(p)e−pτF (r; p) dp, F (r; p) = rs+1Js+1

(
p1/2r

)
, (3.6)

i.e.

rv = 2rs−1

∫ ∞

0

K(ζ 2/r2) exp(−a2ζ 2)ζJs+1(ζ ) dζ,

with ζ ≡ p1/2r and a2 ≡ τ/r2. Choosing the particular case K(ζ 2/r2) = (2ζ/r)s + 1

gives a known integral (Abramowitz & Stegun 1965, p. 486: 11.4.29), namely

rv = r2s+2τ−s−2 exp(−r2/4τ ), (3.7)

a solution that is derived more simply in the following section. Clearly, many more
such solutions may be constructed for other choices of K(p).

4. Separable solutions for any γ (τ ) and constant s

For any γ (τ ) and s(τ ), (2.4) and (2.5) yield the vorticity equation in transformed
variables as

Wτ1
= σ 2s−1(σ 1−2sWσ )σ , (4.1)

where the subscripts denote partial differentiation; this resembles (2.4) with γ = 0.
The corresponding equation for rv is

∂

∂τ1

(rv) =

(
∂

∂σ
− 2s + 1

σ

)
∂

∂σ
(rv), (4.2)

which is just (4.1) with W replaced by rv and s replaced by s + 1. Though these
equations apply when s is a function of time, in this section we henceforth restrict
attention to cases where s is constant.

A further change of variables to

ρ ≡ σ 2(1−s), τ2 ≡ 4(1 − s)2τ1, W (τ1, σ ) ≡ Ξ (τ2, ρ)

transforms (4.1) into

Ξτ2
= (ρμΞρ)ρ, μ ≡ 1 − 2s

1 − s
, (s �= 1). (4.3)
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This is identical to the equation for heat conduction in a bar with conductivity that
varies as the μth power of distance.

Solutions in the form Ξ = epτ2F (ρ; μ) are given by Carslaw & Jaeger (1959, p. 413),
where F is

ρ(1/2)(1−μ)Zν

(
2p(1/2)ρ1−(1/2)μ

2 − μ

)
, ν ≡

(
1 − μ

2 − μ

)
, (μ �= 2), (4.4)

and Zν denotes the modified Bessel functions Iν or Kν .
When s =1, (4.1) becomes

Wτ1
= σ (σ −1Wσ )σ , (4.5)

and the substitution σ ≡ exp x, where −∞ < x < ∞ yields

Wτ1
= (e−2xWx)x,

which is the equation for heat conduction in a bar with conductivity varying as
exp(−2x). But (4.5) then directly yields the separable solutions

W = epτ1σZ1

(
p1/2σ

)
, (4.6)

where Z1 denotes the modified Bessel functions I1 or K1 (see e.g. Kamke 1959, p. 440:
result 2.162 (9)).

Recall that W is related to the vorticity by ω = A2(τ )W , where A(τ ) and other
scaled quantities are defined in (2.5). In order to find the corresponding azimuthal
velocity v, it is necessary to perform a further integration, using

r−1∂(rv)/∂r = ω(r, t)

in the original variables. In transformed variables, this gives

rv =

∫ σ

σ0

σ ′W (τ, σ ′) dσ ′ (4.7)

with arbitrary lower limit of integration. Or, more simply, to find the corresponding
rv to within an additive and multiplicative constant, one may replace s by s + 1 in
expressions for W (τ1, σ ), as explained at (4.2). Clearly, Bessel functions will usually
result. Although the transformed equations (4.1) and (4.2) continue to hold when s is
a function of time, no simple solutions have then been found.

5. Similarity solutions with constant s

The separable solutions discussed above comprise the building blocks of integral-
transform representations of the solutions to general axisymmetric initial-boundary-
value problems. Unfortunately, these general solutions seldom reduce to compact
expressions. However, there exist various other special solutions in compact form,
which we now discuss.

5.1. Cases with s = 0

Perhaps the best known such solution is the steady Burgers vortex (Burgers 1948),
for which s = 0 and γ constant, say −k/ν. Then,

rv = Γ (1 − exp(−kr2/2ν)), ω =
Γ

ν
exp(−kr2/2ν), (5.1)

where the circulation at infinity is 2πΓ (see e.g. Drazin & Riley 2006, pp. 82–83).
(A more elaborate steady ‘two-cell’ vortex solution due to Sullivan (1959) – also
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described by Drazin & Riley (2006, p. 83) – falls outwith the scope of the present
paper since the velocity components u, w differ in form from those assumed here.)

A time-dependent solution that approaches the Burgers vortex at large times t was
obtained by Kambe (1984a, equation (10)) as

ω =
Γ/ν

1 − exp(−2kt)
exp

(
−kr2/2ν

1 − exp(−2kt)

)
. (5.2)

This is closely connected to Oseen’s (1911) solution for a diffusing line vortex with
γ = 0, namely

ω =
constant

4νt
exp

(
−r2

4νt

)
. (5.3)

This satisfies (2.6) when (r , νt) are replaced by (σ , τ1), and the transformations (2.5)
with constant γ = − k/ν immediately yield (5.2). This solution was also stated by
Gibbon, Fokas & Doering (1999, equation (45)). Much earlier, Rott (1958, equation
(29)) found related solutions for the circulation,

rv = Γ∞

{
1 − exp

(
−kr2/2ν

1 + β exp(−2kt)

)}
, (5.4)

where β is any constant. If β is negative, this merely reinitializes the time origin
of solution (5.2); but positive β values give another class. Rott also observed that
differentiating (5.4) with respect to time t yields further solutions.

Many other such solutions with s = 0 and γ = γ (t) may be constructed by using
the transformations (2.5). Solutions with γ proportional to (t0 − t)−1 are given by
Moffatt (2000) and also discussed in Drazin & Riley (2004, pp. 169–171); these are
mentioned further below. Also, as pointed out by Drazin & Riley (p. 170), there are
solutions of the form

rv = C
(
1 − e−ζ 2)

(5.5)

for any prescribed γ (t), for a suitably defined similarity variable ζ (which is just
r/(4νt)1/2 in the classical Oseen case).

5.2. Cases with γ =0, s �= 0

Perhaps the earliest similarity solution with non-zero constant s, but zero γ , is that
of Bateman (1932, p. 349), which is little known. Even earlier, Bateman published his
solution in an NACA Report (Bateman 1923), then with restricted circulation. Posed
as an example in his text on partial differential equations, Bateman asks his readers
to show that (in our notation)

∂v

∂t
= ν

(
∂

∂r
− 2s

r

)(
∂v

∂r
+

v

r

)
(5.6)

and that this has a solution of the type

v = r2s+1t−s−2 exp(−r2/4νt). (5.7)

This result is precisely solution (3.7) above. (In his next example, Bateman asks for
solutions as infinite series, involving ascending powers of (r2/νt), which he connects
with the confluent hypergeometric function in a particular case.)

Note, also, that (5.6) has the steady solutions

v =
C1

r
+ C2r

2s+1, (5.8)

where C1 and C2 are arbitrary constants.
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Further similarity solutions follow from the simple observation that any integral or
derivative of v with respect to t , holding r fixed, is also a solution of (5.6), except at
any singular points; and, of course, any linear combination of such solutions is also
a solution.

A more systematic approach is to seek solutions in the form

rv = tαF (η), η ≡ r2/4νt, (5.9)

where, from (5.6) or (2.3) with γ = 0, F must satisfy

η(F ′′ + F ′) = sF ′ + αF. (5.10)

Bateman’s solution (5.7) corresponds to the choice α = − 1 and F = ηs +1 exp(−η).
Perhaps the simplest is α = s, which leads to

F (η) = exp(−η)

[
C1 + C2

∫ η

η0

useu du

]
, (5.11)

where rv = t sF (η), C1 and C2 are arbitrary constants and η0 is chosen so that the
integral converges. Note that the C1 solution decays exponentially as η approaches
infinity, but the C2 solution does not.

As just mentioned, differentiating or integrating such known solutions with respect
to t , while holding r fixed, gives further solutions of (5.6) in closed form. For instance,
repeatedly differentiating

rv = t s exp(−a/t) ≡ Q0(t; a, s), a ≡ r2/4ν, (5.12)

corresponding to the C1 solution in (5.11), gives the further solutions rv =Qn(t; a),
where

Q1 = t s−2(a + st) exp(−a/t),

Q2 = t s−4[a2 + 2a(s − 1)t + s(s − 1)t2] exp(−a/t),

Q3 = t s−6[a3 + 3a2(s − 2)t + 3a(s − 1)(s − 2)t2 + s(s − 1)(s − 2)t3] exp(−a/t),

...

Qn = exp(−a/t)

n∑
0

t s−n−r
nCr

Γ (s + 1 − r)

Γ (s + 1 − n)
ar . (5.13)

In the last expression, Γ (x) denotes the gamma function and nCr the binomial
coefficient n!/r!(n − r)!. Note also the useful reduction formula

dQ0 (t; a, s)

dt
= sQ0 (t; a, s − 1) + aQ0 (t; a, s − 2) (5.14)

that aids repeated differentiation.
These solutions are related to Bateman’s solution (5.7); for, provided s is a positive

integer, (5.7) is equal to the (s + 1)th t-derivative of the above Q0, times the constant
(4ν)s +1. (To see why, note that all but the last term vanishes in the sum for the
appropriate Qn.) But Bateman’s solution cannot be recovered by differentiation or
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2
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Figure 1. The functions Qnt
n−sof (5.13) versus ζ = r/(4νt)1/2 for n = 0, 1, 2, 3 with s = −1,

showing some reversals of azimuthal velocity. On ζ = 0, these take the respective values 1, −1,
2 and −6.

integration of (5.12) when s is a non-integer. In such cases, a new set of solutions may
be found from Bateman’s solution (5.7) by differentiating or integrating with respect
to t in a similar manner.

In this connection, we note that the similarity solution found by choosing α = 0 in
(5.9) is just that obtained on integrating Bateman’s solution with respect to time t ,
namely

rv = C

∫ η

K

use−u du, (5.15)

where C and K are arbitrary constants and η is as defined in (5.7).
It is worth observing that the solutions of (5.13) typically exhibit flow reversal where

the sign of v changes. For instance, in Q1, this happens at r2/4νt = − s if s is negative
(and supposing t is positive). Similarly, Q2 exhibits no reversals if s > 1, one reversal
if 0 <s < 1 and two if s is negative; and Q3 has no reversals if s > 2, one if 1 <s < 2,
two if 0 <s < 1 and three if s < 0. Clearly, there exist similarity solutions with many
reversals. The functions Qnt

n−s depend only on a/t; these are shown in figure 1 for
n= 0, 1, 2, 3 with s = − 1, where the abscissa (a/t)1/2 = r/(4νt)1/2 is proportional to
the radius r . The flow reversals are evident.

Though attention has largely focused on solutions that decay to zero as r approaches
infinity, those that do not are of interest in contexts where the fluid is confined within
finite regions. Then, the C2 solution of (5.11) becomes relevant. Choosing

rv

ts
= e−η

∫ η

0

useu du ≡ e−ηI (η; s) (5.16)
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(which is appropriate for all s > −1), an integration by parts gives

I (η; s) = ηseη − sI (η; s − 1). (5.17)

Repeated integration by parts, say N times, generates polynomial terms in η,
together with an integral I (η; s − N), all multiplied by exp(−η); and if s is the
positive integer N , the resulting integral I (η; 0) equals exp(η) – 1. The −1 term
may be discarded, as it corresponds to the decaying C1 solution of (5.11), and there
remains a set of algebraic solutions for s = N( = 1, 2, 3, 4, . . . ):

rv

tN
= ηN − NηN−1 + N(N − 1)ηN−2 + · · ·+(−1)r

N!

(N − r)!
ηN−r + · · ·+(−1)NN!. (5.18)

This expression is just (−1)NN! times the (N +1)th partial sum of e−η, and is
closely related to exponential integrals. However, if s is a non-integer, an integral
term in I (η; s − N) will always remain. The expression (5.16) has no positive roots η,
and so does not represent a flow where v changes sign. However, the set of solutions
generated by the various t-derivatives of this rv, with r held fixed, may well do so,
as did the solutions (5.13) above. Similar solutions may be obtained for s � −1 by
choosing a positive lower limit of integration in (5.16).

When α = − 1, a second independent solution, in addition to Bateman’s (5.7), is
readily found. Then, (5.10) has the first integral

ηF ′ + (η − s − 1)F = C, (5.19)

where C is constant. Taking C = 0 gives F (η) =K exp(−η)η1 + s for any constant K ,
which is just Bateman’s solution (5.7). But the general solution of (5.19) gives

rv = Ct−1e−ηηs+1

∫ η

k

u−s−2eu du, η ≡ r2/4νt (5.20)

with arbitrary lower limit of integration k. Again, repeated integration by parts yields
polynomials in η, which terminate if s is an integer.

We have focused on those similarity solutions corresponding to α = − 1, α = s and,
briefly, α =0. Despite the apparent simplicity of (5.10), few other choices of α lead to
simple solutions. The next simplest is α = s/2, for which

F (η) = ηνe−η/2Zν(η), ν ≡ s + 1

2
, (5.21)

where Zν(η) denotes the modified Bessel functions Iν(η) and Kν(η) (cf. Kamke 1959,
p. 441: 2.162, no. 18).

5.3. Cases with γ = γ (t), s �= 0

Similarity solutions of form (5.9) exist only if γ (t) varies as t−1. Setting γ (t) = Gt−1

gives

η(F ′′ + (1 + 2G)F ′) = sF ′ + αF (5.22)

in place of (5.10), and the choice α = s (1 + 2G) yields the first integral

F ′ + (1 + 2G)F = C1η
s,

where C1 is an arbitrary constant. Hence, the general solution in this form is

rv

ts(1+2G)
= C2e

−η1

∫ η1

k

useu du, η1 ≡ (1 + 2G)η, (5.23)

where C2 and k are arbitrary constants.
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This reduces to the solution (5.11) with γ = 0. Also, when s = 0, it becomes

rv = C3 + C2 exp

(
−(1 + 2G)r2

4νt

)
, (5.24)

which is essentially the solution found by Moffatt (2000, equation (2.20)). (His solution
has C3 = −C2, 2G = −c and t replaced by t − t∗. When c > 1, his corresponding
solution (2.14) for the vorticity remains bounded for all t < t∗ and becomes singular
on the axis r = 0 at t∗.) Clearly, if G = 0, (5.24) yields Oseen’s diffusing vortex
solution (5.3).

In fact, a class of solutions with s = 0 that is more general than (5.24) comes from
applying the transformations (2.5) with γ (t) = Gt−1; but first it is necessary to alter
the two lower limits of integration from zero to finite quantities. Sparing details, the
end result is

rv = C3 + C2 exp

(
−(1 + 2G)r2

4ν

t2G

t2G+1 − t2G+1
1

)
, (5.25)

where t1 is an arbitrary constant deriving from the lower limit of integration for τ 1 in
(2.5). (Taking t1 = 0 gives (5.24) again.) When 1 + 2G < 0, the corresponding vorticity
remains bounded when t1 < t < 0 and decays to zero at large r; but it is singular
on the r = 0 axis at both t = t1 and t = 0. One may think of the singularity at t1 as
imposed by initial data, and that at t = 0 as corresponding to Moffatt’s singularity
when γ (t) becomes infinite. Note that unless C2 +C3 = 0, the azimuthal velocity v is
singular at r = 0 for all t .

When s is non-zero, many more solutions with non-zero γ (t) may be found
by applying the transformations (2.5) to those solutions with γ = 0 which are
given in the preceding section. For instance, those deriving from (5.11) when γ

is a constant are

rv =

[
[1 − exp(−2γ νt)]

2γ

]s

e−ξ

[
C1 + C2

∫ ξ

ξ0

useu du

]
, ξ ≡ −γ r2

2[1 − exp(2γ νt)]
,

(5.26)
where C1, C2 and ξo are arbitrary constants, ξo being chosen so that the integral
converges. (When s = 0, this gives solution (5.4).)

However, rather than applying the transformations (2.5) which are expressed in
terms of vorticity, one may use an alternative approach based directly on rv that is
broadly equivalent in the present context. This is close to the method of Rott (1958)
as described in Drazin & Riley (2006, pp. 169–170) for cases with s = 0. (The author
is most grateful to a referee for drawing this to his attention and for outlining the
analysis of the following paragraph.)

Similarity solutions of (2.3) are sought with the more general form rv = Ψ (ζ ), where
ζ = r/δ(τ ). Equation (2.3) then yields

d2Ψ

dζ 2
+

{(
δ δ̇ − γ δ2

)
ζ − 2s + 1

ζ

}
dΨ

dζ
= 0, (5.27)

where the overdot denotes differentiation with respect to τ . On choosing δ δ̇ − γ δ2 =
2s + 1, which determines δ, Ψ satisfies

d2Ψ

dζ 2
+ (2s + 1)

(
ζ − 1

ζ

)
dΨ

dζ
= 0,
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from which it follows that

dΨ

dζ
= Cζ 2s+1 exp

[
−

(
s +

1

2

)
ζ 2

]
(ζ = r/δ(τ ), C constant) (5.28)

and

δ2(τ ) = (4s + 2)

∫ τ

τ0

exp

(
2

∫ τ2

τ1

γ (t ′) dt ′
)

dτ2, (5.29)

where τ 0 and τ 1 are arbitrary constants. When s = 0 the corresponding rv given by
(5.28)–(5.29) includes the particular solution (5.5) already mentioned. Also, if γ = 0
and s is non-zero, the corresponding solution for rv simplifies to (5.15). As this is just
one member of a family of similarity solutions (corresponding to the choice α = 0 in
(5.9)), it is clear that there are further similarity solutions to be found for non-zero
γ (t).

This may be done by setting rv = F(τ )Ψ (ζ ) with

F(τ ) = exp

∫ τ

τ0

Kδ−2(τ ′) dτ ′ (Kconstant)

and δ(τ ) as above. Then, the equation for Ψ (ζ ) becomes

d2Ψ

dζ 2
+ (2s + 1)

(
ζ − 1

ζ

)
dΨ

dζ
= KΨ

in place of that above. This may be transformed into a form like (5.10), yielding new
classes of solutions corresponding to particular choices of K , much as above. Also,
new solutions may be found as time derivatives or time integrals of those already
known, as already discussed. The details are suppressed.

6. Discussion
It must be admitted that the direct practicality of many of the above solutions is

rather limited. For, the imposed straining flow represented by γ becomes ever larger at
large distances z or r , and terms in s require either an infinite line source or sink along
the z-axis, or cylindrical boundaries at specified radius r where there is appropriate
suction or injection. But such idealization permits mathematical simplicity that aids
physical understanding and well represents the local behaviour of more complex
flows. Unfortunately, the general solutions of initial-boundary-value problems are too
complicated to give much physical understanding except in asymptotic limits, such as
when t becomes very large (see e.g. Fukumoto 1990); but even these have value in
revealing whether or not the circulation 2πrv decays to zero as r approaches infinity.
Our simpler solutions, besides their intrinsic interest, may well be of use in checking
computer codes for direct numerical simulations.

The physical processes acting in our simple geometrical configuration are threefold.
There is viscous diffusion; radial advection associated with the inflow or outflow
velocity component u, deriving from either or both of the imposed straining field
and suction or injection of fluid; and vortex stretching or contraction due to the
imposed straining velocity component w. The interplay of these three processes can
yield various outcomes.

With neither externally imposed strain nor suction or injection (s = γ =0), a line
vortex with an initial singularity along the z-axis at t = 0 diffuses as in Oseen’s solution
(5.3) when t > 0. But, when γ is a negative constant, the radial inflow u and vortex
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stretching by w counteracts viscous diffusion so that a final steady state is reached:
the well-known Burgers vortex (see (5.1), (5.2), (5.4) above). On the other hand, if γ is
time-dependent, there is no final steady state. For instance, when γ (t) = Γ t−1, Moffatt’s
(2000) solution (cf. (5.24) above) starts with a bounded vortex with Gaussian shape
in r at some negative t , and this becomes singular at t =0 (equivalently, Moffatt’s t*
with γ (t) = Γ (t − t∗)−1). This was generalized in (5.25) to give a solution for which
the vorticity has a singularity on the z-axis at t = t1 < 0, corresponding to an inviscid
line vortex as the initial condition at that time, and which is subsequently finite up to
t = 0. At this time, the vortex again becomes singular, since the ever-increasing inflow
and vortex-stretching due to γ (t) = Γ t−1 reverses the effect of all the viscous diffusion
that has taken place.

When s is a non-zero constant and γ =0, the C1 part of solution (5.9), (5.11) yields
Oseen’s diffusing vortex when s tends to zero. But when s > 1 the corresponding
vorticity, ω = C1(t

s−1/2ν) exp(−r2/4νt), has no singularity, as it is instead zero
everywhere at t = 0. The subsequent vorticity in the flow results from injection at the
‘inner boundary’ r = 0, combined with viscous diffusion. More precisely, if, instead of
suction or injection on the axis r = 0, we envisage equivalent conditions to be applied
at a circular boundary with very small non-zero radius r0, the imposed radial and
azimuthal velocities there would be u =2νs/r0, v = C1t

s/r0, and the corresponding
vorticity ω would be C1(t

s−1/2ν), for all but very small times t > 0. Note that these
‘boundary values’ of v and ω respectively increase or decrease with time t according
to whether s is greater or less than 0 and 1; these changes in azimuthal velocity and
vorticity are imposed not by the blowing or suction as such, but by the requirement
of self-similarity. Obviously, these boundary values have a large influence on the
developing flow.

Their role is made plain in figure 2, which shows the simple solution (5.12) for
various values of s and time t . To better display the comparison, the solutions are
rescaled so that they are identical at the initial time τ = 4νt = 0.1, and they are shown
also at the later times τ = 0.2, 0.5 and 1.0 for s = 0, 1 and -1. The positive s values
correspond to ‘blowing’ and the negative s values to ‘suction’ at the axis r = 0. It
is clear that, on top of the contribution of viscous diffusion, solutions with blowing
grow in strength by injection of vorticity, and those with suction rapidly weaken by
its removal.

The initial state corresponding to Bateman’s solution (5.7) is rather more subtle.
There, as r approaches zero at some fixed t , the circulation 2πrv is proportional to
(r2/t)s + 1t−1and the vorticity to (r2/t)s t−2. But the limit as t and r both approach
zero is non-uniform, depending on the ratio r2/t. A similar non-uniform limit occurs
in the set of solutions (5.12)–(5.13); but, for these, the various Qn are proportional to
t s−n at r = 0 with finite t . Again, suction or injection at r = 0 combines with viscous
diffusion in all cases, yielding solutions with vorticity and circulation that approach
zero at sufficiently large r for all t > 0.

The various Qn solutions, though more complex, are similarly affected by injection
or removal of vorticity at the axis r =0. Their various reversals in azimuthal velocity
are present from the outset, for appropriate values of s, and are imposed by notional
initial conditions; the radii at which these occur increase as t1/2 on account of
viscous diffusion. No matter how great the suction on the axis, these locations always
move outwards – a counter-intuitive result, perhaps, but inward motion would be
incompatible with the structure of the similarity solutions.

Rather different are the algebraic solutions (5.16)–(5.18) that derive from the C2

part of (5.11) when s is a positive integer, and also the corresponding algebraic
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Figure 2. The simple solution (5.12) for rv versus r at τ = 0.1, 0.2, 0.5, 1.0 for (a) s = 0,
(b) s =1 (blowing) and (c) s = −1 (suction). To aid comparison, solutions in (b) and (c) are
multiplied by 10 and 0.1 respectively, giving the same function of r for all three at τ = 0.1
(shown by the thicker line).

part of our generalization (5.20) of Bateman’s solution. These do not decay to zero
exponentially with r2 as r increases, but may be relevant for flows confined within a
cylindrical outer wall of specified radius. The simplest cases to envisage (but not to
realize in practice!) have a moving outer boundary at some r = ct1/2 corresponding
to a constant value of η.

Many such flows between moving cylindrical boundaries may easily be constructed
using the above solutions. Consider, for instance, the solutions (5.13) that may exhibit
reversals of the flow direction in v, some of which are shown in figure 1. The Q2

solution exhibits two such reversals when s is negative, at say η = η1 and η2, where
η = r2/4νt. Now, if one envisages two expanding cylinders at η1 and η2, then the Q2

solution yields a flow between them that satisfies the no-slip condition on v at both
boundaries (without need for their rotation), and with suction or injection of u at
both.

It is of some physical interest that (4.2) for rv with constant s may be transformed
into (4.3) or (4.5) for diffusion of heat in a longitudinal bar having spatially varying
conductivity: this enables solutions such as (4.4) and (4.6) to be found from their
thermal equivalents. Also, a referee has pointed out some similarities between our
vorticity equation and the Fokker–Planck equation of Brownian motion (see e.g.
Uhlenbeck & Ornstein, 1930) that may warrant further investigation.
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Some particularly simple separable solutions for rv, when both s and γ are non-
zero constants, are given in (3.5). The second and fourth of these exhibit exponential
decay as r2 approaches infinity provided γ is negative. The second has exponential
decay with time at each fixed r , while the fourth has constant circulation on circuits
of radius r that are expanding or contracting according to r2 = 4 sνt + constant.
When s and γ are opposite in sign, the radial velocity changes sign at the radius
r = (−s/γ )1/2; accordingly, solutions with constant s and γ have a ‘two-cell’ radial
structure reminiscent of, but simpler than, that studied by Sullivan (1959).

The most valuable tool for finding solutions with non-zero s and γ is undoubtedly
the Rott–Lundgren–Kambe transformation (2.5) (with lower limits of integration
changed as necessary), or the generalized similarity method sketched at the end of
the previous section. In principle, this gives solutions for any γ (t) and constant s

whenever the corresponding solution with the same s and with γ = 0 is known. Some
explicit solutions are given in (5.23) with γ (t) = Γ/t and in (5.26) with γ constant.
A class of solutions for any γ (t) is given in (5.27)–(5.29) and we have described
how more may be constructed. Also, derivatives and integrals with respect to time of
known solutions of the governing equations (2.3) and (2.4) are themselves solutions;
this is a very useful device for deriving further classes.

The various solutions described above demonstrate the interplay of competing
physical mechanisms: injection of vorticity with ‘blowing’ at the inner boundary,
or removal of existing vorticity with suction; advection inwards or outwards by the
radial velocity component due to the rate-of-strain γ ; vortex stretching or contraction
due to the corresponding axial rate of strain; and viscous diffusion throughout the
flow domain. Each solution can be understood physically in these terms; but it must
be remembered that, in assuming particular simple forms, whether separable or self-
similar, not all physical scenarios are captured. Though many of these solutions may
lack direct practical application, one must be grateful for finding any simple exact
solutions of the Navier–Stokes equations, as not a huge variety is known.

I am grateful to Paul Martin for showing me a draft of his forthcoming book on
Harry Bateman and for drawing to my attention the little-known solution of Bateman
discussed in this paper. I also thank David Dritschel and the referees for some helpful
comments and suggestions, and Peter Lindsay for helping with the diagrams.
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